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Chapter 1

Structure of the Solver Input File

1.1 Introduction

Solving partial differential equation (PDE) models witletsolver of EImer requires that a precise description
of the problemis given using the so-called solver input biliefly referred to as the sif file. This file contains
user-prepared input data which specify the location of nfigshand control the selection of physical models,
material parameters, boundary conditions, initial cand#, stopping tolerances for iterative solvers, etc. In
this chapter, the general structure of the file is describd.explain how the input data is organized into
different sections and describe the general keyword symfaigh is used in these sections to define the
values of various model parameters and to control the swiytiocedures.

In the case of simple problem setups the solver input file meawitten automatically by the prepro-
cessor of Elmer software, so that knowing the solver inpatfirmat may be unnecessary. Creating a more
complicated setup, or using keywords introduced by the, ismvever, requires the knowledge of the file
format and keyword syntax.

In the following the general structure of the input file isfiiteistrated by using simple examples, without
trying to explain all possibilities in an exhaustive mann@éfe then describe the keyword syntax in more
detail, showing also how model parameters whose valuesdepesolution fields can be created. The later
chapters of this manual, and ElImer Models Manual, which$eswon describing the PDE models Elmer can
handle, provide more detailed material on specific issumeETutorials also gives complete examples of
solver input files.

1.2 The sections of solver input file

The material of the solver input file is organized into diffiet sections. Each section is generally started
with a row containing the name of the section, followed by mbar of keyword commands, and ended with
a row containing the wor&nd. The names for starting new sections are

e Header
e Simulation

Constants

Body n

Material n

Body Force n

Equation n
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1. Structure of the Solver Input File 7

e Solver n
e Boundary Condition n
e Initial Condition n

Heren associated with the section name represents an integeifieleneeded for distinguishing between
sections of the same type. A basic keyword command includadection is nothing more than a statement
which sets the value of a keyword with an equal sign.

In the following we describe how the sections are basicaligrayed without trying to explain all possi-
bilities in an exhaustive manner. The later chapters ofrtranual and Elmer Models Manual provide more
detailed material on specific issues. Elmer Tutorials algesgcomplete examples of solver input files.

Header section

The location of mesh files is usually given in the header eactDften this is also the only declaration given
in the header section. If the ElImer mesh files (see Appendiar@)located in the directory ./mymesh, the
header section may simply be

Header
Mesh DB "." "mymesh"
End

Note that separate equations can nevertheless be distretsng different meshes if the location of mesh
files is given in the solver section described below.

Simulation section

The simulation section is used for giving general informatihat is not specific to a particular PDE model
involved in the simulation. This information describes ttwordinate system used, indicates whether the
problem is stationary or evolutionary, defines the file nafoesutputting, etc. Without trying to describe
many possibilities and the details of commands, we only tiiedollowing simple example:

Simulation
Coordinate System = "Cartesian 1D"
Coordinate Mapping(3) = 1 2 3
Simulation Type = Steady State
Steady State Max lterations = 1
Output Intervals(1) = 1
Post File = "case.ep”
Output File = "case.dat"

End

Constants section

The constants section is used for defining certain physaatants. For example the gravity vector and the
Stefan-Boltzmann constant may be defined using the commands

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
End

If the constants are not actually needed in the simulathig gection can also be left empty.
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1. Structure of the Solver Input File 8

Body, material, body force and initial condition sections

The Elmer mesh files contain information on how the compaiteti region is divided into parts referred
to as bodies. A body section associates each body with ariequset, material properties, body forces,
and initial conditions by referring to definitions given irspecified equation section, material section, body
force section, and initial condition section. To manage dafds, the different sections of the same type
are distinguished by integer identifiers that are parts efstaction names. Note that the integer in the body
section name is an identifier for the body itself.

For example, one may define

Body 1
Material = 1
Body Force = 1
Equation = 1
Initial Condition = 2
End

Material properties, body forces, an equation set, andalnionditions are then defined in the material
section

Material 1

End

the body force section

Body Force 1

End

the equation section

Equation 1

End

and the initial condition section

Initial Condition 2

End

What material properties and body forces need to be spediépdnds on the mathematical models involved
in the simulation, and the initial condition section useddwing initial values is only relevant in the so-
lution of evolutionary problems. We here omit the discussid these very model-dependent issues; after
reading this introductory chapter the reader should be tallederstand the related documentation given in
Elmer Models Manual, which focuses on describing the diffitimathematical models, while the contents
of equation section will be described next.

Equation and solver sections

Equation section provides us a way to associate each botlyanset of equation solvers. That is, if the
set defined consists of more than one equation solver, dgueyaical phenomena may be considered to
occur simultaneously over the same region of space. Indalidquation solvers are actually defined in
solver sections, the contents of an equation section beisigdlly a list of integer identifiers for finding the
solver sections that define the solvers. The keyword commagivén in the solver sections then control the
selection of physical models, linearization proceduresaflinear models, the selection of solution methods
for resulting linear equations, convergence tolerandes, e
For example, if only two solvers are needed, one may simpiyéa list of two solver identifiers
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1. Structure of the Solver Input File 9

Equation 1
Active Solvers(2) = 1 2
End

Then the solver definitions are read from the solver sections
Solver 1
End
and
Solver 2
End
Finally, we give an example of solver definitions, withowtinig to explain the commands at this point;

Solver 1

Equation = "Poisson"

Variable = "Potential"

Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct"

Steady State Convergence Tolerance = 1le-06
End

Boundary condition section

Boundary condition sections define the boundary conditfonshe different equations. The Elmer mesh
files contain information on how the boundaries of the bodiesdivided into parts distinguished by their
own boundary numbers. The keywofadrget Boundaries is used to list the boundary numbers that
form the domain for imposing the boundary condition. Forrepée the declaration

Boundary Condition 1
Target Boundaries(2) = 1 2

End
means that the boundary condition definitions that followarn the two parts having the boundary numbers
land 2.

Text outside sections

We finally note that some commands, such as comments staitedh& symbol ! and MATC expres-
sions described below, may also be placed outside sectiomtibams. An exception of this type is also the
command

Check Keywords "Warn"

usually placed in the beginning of the input file. When thisnoeand is given, the solver outputs warning
messages if the input file contains keywords that are nadign the file of known keywords. If new
keywords are introduced, misleading warning messages eavdided by adding the new keywords to the
keyword fileSOLVER.KEYWORD®Bcated in the directory of the shared library files of El®@elver.
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1. Structure of the Solver Input File 10

1.3 Keyword syntax

As already illustrated, a basic keyword command used in theesinput file is a statement which sets the
value of a solution parameter with the equal sign. Such a canchin its full form also contains the data
type declaration; for example

Density = Real 1000.0
Valid data types generally are

o Real

Integer

Logical
e String
o File

If the keyword is listed in the keyword fiIEOLVER.KEYWORD®e data type declaration may be omitted.
Therefore, in the case of our example, we may also define

Density = 1000.0

The value of a keyword may also be an array of elements of Bpédaata type, with the array size
definition associated with the keyword. We recall our pregi@xamples of the equation and boundary
condition sections, where we defined two lists of integensgithe commands

Active Solvers(2) = 1 2

and

Target Boundaries(2) = 1 2

Two-dimensional arrays are also possible and may be defmed a

My Parameter Array(3,3) = Real 1 2 3 \
456 \
789

Defining parameters depending on field variables

Most solver parameters may depend on time, or on the fieldablas defined in the current simulation
run. Such dependencies can generally be created by meaabudért data, MATC functions, or Fortran
functions. MATC has the benefit of being an interpreted laug making an additional compilation step
with a compiler unnecessary.

Simple interpolating functions can be created by meanshofiéa data. The following example defines
the parametebensity the value of which depends on the variabkmperature

Density = Variable Temperature
Real
0 900
273 1000
300 1020
400 1000
End
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This means that the value @fensity is 900 whenTemperature is 0, and the following lines are
interpreted similarly. Elmer then uses linear interpalatio approximate the parameter for argument values
not given in the table. If the value of the independent vdeab outside the data set, the first or the last
interpolating function which can be created from the tatedavalues is used to extrapolate the value of the
parameter.

If the field variable has several independent componenth, asithe components of displacement vector,
the independent components may be used as arguments inteifudefinition. For example, if a three-
component field variable is defined in a solver section udiegcommands

Variable = "Displ"
Variable DOFs = 3

then the solver of EImer knows, in addition to the three-comgnt vectoDispl , three scalar fieldBispl
1, Displ 2 andDispl 3 . These scalar fields may be used as independent variablasamepter defini-
tions, and used in the definitions of initial and boundaryditions, etc.

More complicated functions can be defined using MATC langudgere the basic usage of MATC in
connection with the solver input file is illustrated; for atiditional documentation, see a separate manual
for MATC. For example, one may define

Density = Variable Temperature
MATC "1000* (1-1.0e-4 =« (tx-273))"

This means that the parameensity depends on the value @emperature as

p = po(l —B(T —Top)), (1.1)

with pg = 1000, 3 = 10~* andT, = 273. Note that the value of the independent variable is knowtx as
in the MATC expression.

If the independent variable has more than one componenvatti@bletx will contain all the compo-
nents in valuesx(0) ,tx(1) ,...tx(n-1) , wheren is the number of the components of the independent
variable. A MATC expression may also take several scalanragnts; one may define, for example,

My Parameter = Variable Time, Displ 1
Real MATC ".."

The values of the scalar field$me andDispl 1 can then be referred in the associated MATC expression
by the name#x(0) andtx(1l) , respectively.

In addition to using MATC functions, Fortran 90 functionsyraso be used to create parameter defini-
tions, etc. In the same manner as MATC functions are used, ayed&fine

Density = Variable Temperature
Procedure "“filename" "proc"

In this case the file "filename" should contain a shareabléUsix) or .dIl (Windows) code for the user
function whose name is "proc". The call interface for thetFeor function is as follows

FUNCTION proc( Model, n, T ) RESULT(dens)
USE DefUtils)
IMPLICIT None
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: T, dens

dens = 1000 * (1-1.0d-4(T-273.0d0))
END FUNCTION proc

The Model structure contains pointers to all informatiomatithe model, and may be used to obtain field
variable values, node coordinates, etc. The argument rimtlex of the node to be processed, and T is the
value of the independent variable at the node. The functionlsl finally return the value of the dependent
variable.

The independent variable can also be composed of seveegdémdient components. We may thus define
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1. Structure of the Solver Input File 12

Density = Variable Coordinate
Procedure "filename" "proc"

Now the argument T in the Fortran function interface showddlyeal array of three values, which give the
X,y and z coordinates of the current node.

Parameterized keyword commands

The solver input file also offers possibilities for creatipgrameterized commands that utilize MATC. In the
solver input file an expression following the symbol $ is gatig interpreted to be in MATC language. If
the solver input file contains the lines

$solvertype = “lterative"
$tol = 1.0e-6

then one may define, e.g.,

Solver 1

Linear System Solver = $solvertype

Linear System Convergence Tolerance = $tol
En.OII.
Solver 2
Linear System Solver = $solvertype
Linear System Convergence Tolerance = $100 * tol

End
Alternative keyword syntax

There are some alternative keyword syntaxed that may sorastbe needed. The size of a integer or real
number may be given in parenthesis with the keyword, but wiio the Size declaration. Therefore the
following to are exactly the same

Timestep Intervals(3) = 1 10 100
Timestep Intervals = Size 3; 1 10 100

This feature is usefull when giving vectors and matriceslmé&GUI since there the keyword body is fixed
and cannot include any size declaration. Note that in admweémicolon is used as an alternative character
for newline.

Another convention is to use two colons to make in-lined digiits in the sif files. The following to
expressions are equal

Body Force 1
Heat Source = 1.0
End

and

Body Force 1 :: Heat Source = 1.0
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1. Structure of the Solver Input File 13

1.4 Running several sequences

Execution within command file

When reading the strinBUNin the command file the solver stops the reading and perfdnmsdmputa-
tion with the instructions so far obtained. After a succésfecution the solver continues to interpret the
command file. Using this functionality it is therefore pdisito create scripts where some parameter value
is changed and the problem is recomputed. For example, gdiinsame sequence to the end of.gie

file could be used to test the solution with different linealver

RUN
Solver 1::Linear System lIterative Method = BiCgstabl
RUN

It should be noted that not quite all features support thixedure. For example, some preconditioners
create static structures that will not be recreated.
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Chapter 2

Restart from existing solutions

Often, the user wants to restart a run. This may be eitherlgitopcontinue a - to what reason ever -
interrupted simulation, but also to read in values needieéein initial conditions or in boundary conditions.

2.1 Restartfile

Any output file given by the syntax
Output File String

can be used as a restart point for a new simulation. The liimitas, that the mesh, the previous case has
been run on is identical to the one the new run is performed lanparallel runs, additionally, also the
partitions of the mesh have to coincide.

The syntax for restarting then is given in tBamulation  section by declaring the restart file name as
well as theRestart Position

Simulation
Restart File = "previousrun.result"
Restart Position = 101

End

This would restart the current simulation from the timeétén level 101 of the previously stored result file
previousrun.result
Upon running the new simulation, a similar message in thedstad output of EImer should be seen:

LoadRestartFile:

LoadRestartFile: --------memmmmmmmmeeeeeeeee e
LoadRestartFile: Reading data from file: previousrun.res ult
LoadRestartFile: ASCII 1

LoadRestartFile:

LoadRestartFile: Restart time = 100.0

LoadRestartFile: All done

LoadRestartFile: --------memmmmmmemeeeeeeeeeee e
LoadRestartFile:

If the amount of stored time/iteration levels a priori is kabwn, the user can insert the syntax
Restart Position = 0

in order to make sure to reload the last stored time-/iteratével.

Result files from steady state simulations often contairtipialiteration steps (with only the last con-
taining the converged solution). Nevertheless, thesamtsts of solutions are - if reloaded - interpreted as
different time-levels. In this case the user might want tfirgea time being set for the restart, especially if
continuing with transient runs. This is done with the keyavor

CSC — IT Center for Science [@)sv-nD |



2. Restart from existing solutions 15

Restart Time Real

in order to manually set the time for the zeroth time-leveth& new simulation.

2.2 Initialization of dependent variables

Initialization of variables and their boundary conditiomg default is done before reading in of previous
results. That has two main implications:

1. Values set in the sectidmitial Condition are overwritten by corresponding values of the
variable being loaded afterwards from the restart file

2. On other variables dependent values of variables withieitial- or boundary conditions are by default
not initiated with those values from the restart file

The latter can be influenced with two keyworéRestart Before Initial Conditions (default
False ) andlnitialize Dirichlet Condition (defaultTrue ).
Restart Before Initial Conditions = Logical True would first load the variables

from the restart file and then apply initial conditions to $hovariables that have not been set by the ear-
lier solution. This is necessary if one of the initial comalits is dependent on the earlier solution. By

default, first the initial conditions from the solver inpuefare set and thereafter the restart files (if existing)
is read.

Initialize Dirichlet Condition by default is set to true, which means that Dirichlet Con-
ditions are set before the simulation and thus also befageptrticular solver for that variable is being
executed. If now a boundary condition for one variable isedefent on the value of another, the first time
Dirichlet condition is set from the initial value of variadd - either set or read in from a restart file. If this is
not wanted, the user can switttitialize Dirichlet Condition = False which will set the
Dirichlet condition on the fly, during the execution of thethe variable attached solver.
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Chapter 3

Solution methods for linear systems

3.1 Introduction

Discretization and linearization of a system of partiafeliéntial equations generally leads to solving linear
systems
Az = b, (3.1)

where A andb are of orders: x n andn x 1, respectively. A specific feature of the coefficient matsix
resulting from the finite element discretization is thathetrix is sparse, i.e. only a few of the matrix entries
in each row differ from zero. In many applications the system also have a very large orderso that the
chief part of the computation time in performing the simidatis typically spent by solvers for the linear
systems.

Solution methods for linear systems fall into two large gatées: direct methods and iterative methods.
Direct methods determine the solution of the linear systeat#y up to a machine precision. They perform
in a robust manner leading to the solution after a predetethnumber of floating-point operations. Never-
theless, the drawback of direct methods is that they areresiyein computation time and computer memory
requirements and therefore cannot be applied to the salofitinear systems of very large order. The ef-
ficient solution of large systems requires generally theafdeerative methods which work by generating
sequences of improving approximate solutions.

ElmerSolver provides access to both direct and iterativehods. The iterative methods available fall
into two main categories: preconditioned Krylov subspaeghmods and multilevel methods. Iteration meth-
ods that combine the ideas of these two approaches may alsonisgucted. Such methods may be very
efficient leading to a solution after a nearly optimal numtfesperation counts.

The development of efficient solution methods for lineartayss is still an active area of research, the
amount of literature on the topic being nowadays vast. Thedfithe following discussion is to provide
the user the basic knowledge of the solution methods availatEImerSolver. The detailed description of
methods is omitted. For a more comprehensive treatmengetiter is referred to references mentioned.

3.2 Direct methods

A linear system may be solved in a robust way by using diredhods. There are two different options
for direct methods in ElmerSolver. The default method zeii the well-known LAPACK collection of
subroutines for band matrices. In practice, this solutiathad can only be used for the solution of small
linear systems as the operation count for this method isadmor.

The other direct solver employs the Umfpack routines toesjvarse linear systemy [ Umfpack uses
the Unsymmetric MultiFrontal method. In practice it may Ibe tmost efficient method for solving 2D
problems as long as there is enough memory available.

It should be noted that the success of the direct solversispeery much on the bandwidth of the sparse
matrix. In 3D these routines therefore usually fail miséyab
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3. Solution methods for linear systems 17

Elmer may be also compiled withllumps SuperLU , andPardiso . The licensing scheme of these
softwares do not allow the distribution of precompiled liaa but every user may themselves compile a
version that includes these solvers. Many times the besaitinolver for a particular problem may be found
among these.

3.3 Preconditioned iteration methods

ElmerSolver contains a set of Krylov subspace methods ®it#rative solution of linear systems. These
methods may be applied to the solution large linear systernspid convergence generally requires the use
of preconditioning.

3.3.1 Krylov subspace methods

The Krylov subspace methods available in ElImerSolver are

e Conjugate Gradient (CG)

Conjugate Gradient Squared (CGS)

Biconjugate Gradient Stabilized (BiCGStab)
BiCGStab()

Transpose-Free Quasi-Minimal Residual (TFQMR)

Generalized Minimal Residual (GMRES)
e Generalized Conjugate Residual (GCR)

Both real and complex systems can be solved using thesathlgsr For the detailed description of some
of these methods se8][and [4].

A definite answer to the question of what is the best iterati@ihod for a particular case cannot be
given. In the following only some remarks on the applicaypitif the methods are made.

The CG method is an ideal solution algorithm for cases wharebefficient matrix4 is symmetric and
positive definite. The other methods may also be appliedsescaherel is non-symmetric. It is noted that
the convergence of the CGS method may be irregular. The Bi@its&d TFQMR methods are expected
to give smoother convergence. In cases where BiCGStab adegnk well it may be advantageous to use
the BiCGStah() method, with¢ > 2 a parameter. Faster convergence in terms of iteration saquay be
expected for increasing values of the paramététowever, since more work is required to obtain the iterate
as/ increases, optimal performance in terms of computatiommakwnay be realized for quite a small value
of ¢. Starting with the valué = 2 is recommended.

The GMRES and GCR methods generate gradually improvingtésrthat satisfy an optimality condi-
tion. The optimality may however come with a significant cgiste the computational work and computer
memory requirements of these methods increase as the nwhiberations grows. In practice these meth-
ods may be restarted after solution updates have been performed in order to avoid tbreasing work
and storage requirements. The resulting methods are eeféoras the GMRE%{) and GCR{n) meth-
ods. Here the choice of: has to be controlled by the user. It should be noted that theezgence of the
restarted algorithms may be considerably slower than thatlloversions. Unfortunately, general guidelines
for determining a reasonable value farcannot be given as this value is case-dependent.

The GCR method suits well to situations where the linearesols preconditioned by applying some
other iterative method such as a multigrid solver. When swedted iterations are employed, using the GCR
method as a linear solver is recommended.
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3.3.2 Preconditioning strategies

The performance of iteration methods depends greatly osghetrum of the coefficient matrit. The rate
at which an iteration method converges can often be imprbyeadansforming the original system into an
equivalent one that has more favorable spectral propefiigs transformation is called preconditioning and
a matrix which determines the transformation is called a@nelitioner.

In ElImerSolver preconditioning is done by transformidglj into the system

AM ™'z =0, (3.2)

where the preconditioneY/ is an approximation tod andz is related to the solutiom by z = Mz. In
practice, the explicit construction of the inver®&~! is not needed, since only a subroutine that for a given
v returns a solutiom to the system

Mu = (3.3)

is required.

ElmerSolver provides several preconditioning strategiesese include Jacobi preconditioning and in-
complete factorization preconditioners. The preconditig step 8.3) may even be defined in terms of some
iteration method for the syster8.Q) with M = A. This possibility is considered in Secti@mw.3below.

The Jacobi preconditioner is simply based on takifigo be the diagonal ofl. More sophisticated pre-
conditioners may be created by computing incomplete Lbféxations ofA. The resulting preconditioners
are referred to as the ILU preconditioners. This approaghgythe preconditioner matri/ in the form
M = LU whereL andU are lower and upper triangular with certain elements thigean the factorization
process ignored.

There are several ways to choose a set of matrix positiorisatieaallowed to be filled with nonzero
elements. ILU preconditioners of fill levéV referred to as the ILU(N) preconditioners are built so that
ILU(0) accepts nonzero elements in the positions in whidhas nonzero elements. ILU(1) allows nonzero
elements in the positions that are filled if the first step oti€dan elimination is performed fot. ILU(2)
accepts fill in positions that are needed if the next step afsSian elimination is performed with ILU(1)
factorization, etc.

Another strategy is based on numerical tolerances. Thétiegpreconditioneris referredto as the ILUT
preconditioner. In the creation of this preconditioner €&aan elimination is performed so that elements of
a given row of the LU factorization are obtained but only edents whose absolute value (scaled by the norm
of all values of the row) is over a given threshold value areepted in the preconditioner matrix.

Obviously, the additional computation time that is spemtrgating the preconditioner matrix and solving
systems of the type3(3) should be compensated by faster convergence. FindingtmalpLU precondi-
tioner for a particular case may require the use of trial amdre Start with ILU(0) and try to increase the
fill level N. As N increases, more and more elements in the incompleteakttofization of the coefficient
matrix are computed, so the preconditioner should in ppiedde better and the number of iterations needed
to obtain a solution should decrease. At the same time theamemsage grows rapidly and so does the time
spent in building the preconditioner matrix and in applythg preconditioner during iterations. The same
applies to the ILUT preconditioner with decreasing thrddhvalue.

3.4 Multilevel methods

A class of iterative methods referred to as multilevel mdthprovides an efficient way to solve large linear
systems. For certain class of problems they perform negtiyrally, the operation count needed to obtain a
solution being nearly of order. Two different multilevel-method approaches are avadablElmerSolver,
namely the geometric multigrid (GMG) and algebraic muldgAMG).

3.4.1 Geometric multigrid

Given a meshr; for the finite element discretization of problem the geomatnultigrid method utilizes
a set of coarser meshfg, k = 2, ..., N, to solve the linear system arising from the discretizati@Qme
of the fundamental ideas underlying the method is based @iid#a of coarse grid correction. That is, a
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coarser grid is utilized to obtain an approximation to theem the current approximate solution of the
linear system. The recursive application of this strateggdb us to multigrid methods.

To utilize different meshes multigrid methods require tlewelopment of methods for transferring vec-
tors between fine and coarse meshes. Projection operatoused to transfer vectors from a fine m&gh
to a coarse mesf#,; and will be denoted by, ™", while interpolation operatotg’, , transfer vectors from
a coarse mesh to a fine mesh.

The multigrid method is defined by the following recursivgaithm: GivenA, b and an initial guessg
for the solution of the systemxz = b seti = 1 and do the following steps:

1. If i = N, then solve the systemz = b by using the direct method and return.

2. Do pre-smoothing by applying some iterative algorithmaaiven number of times to obtain a new
approximate solutiof.

3. Perform coarse grid correction by starting a new appbeedf this algorithm withA = If“AI}H,
b= I (Ay —b),i =i+ 1 and the initial guess = 0.

4. Compute a new approximate solution by setting v -+ Iz‘i+1€

5. Do post-smoothing by applying some iterative algoritlome given number of times to obtain a new
approximate solutio.

6. If the solution has not yet converged, go to step 2.

In ElmerSolver one may choose the Jacobi, CG or BiCGStakrittignas the method for smoothing itera-
tions.

The full success of multigrid methods is based on the faderabmbination of the properties of ba-
sic iteration methods and methods for transferring vedietsveen meshes. The smoothing iterations give
rapid convergence for oscillatory solution componentdevboarse grid correction entails an efficient solu-
tion method for smooth solution components. For a comprgkenntroduction to the geometric multigrid
method the reader is referred 9]

3.4.2 Algebraic multigrid

In many cases the geometric multigrid may not be applied imxave do not have the luxury of having
a set of appropriate hierarchical meshes. The alternagitlea algebraic multigrid (AMG) method which
uses only the matrixd to construct the projectors and the coarse level equatidMG is best suited for
symmetric and positive semidefinite problems. For otheesypf problems the standard algorithm may fail.
For more information on AMG see referenéd.|

The AMG method has two main phases. The set-up phase indluelescursive selection of the coarser
levels and definition of the transfer and coarse-grid opesafl he solution phase uses the resulting compo-
nents to perform a normal multigrid cycling until a desiredaracy is reached. The solution phase is similar
to that of the GMG.

Note that the AMG solvers in ElImerSolver are not fully matufdey may provide good solutions for
some problems while desperately failing for others.

Classical Ruge-Stuiben algorithm

The coarsening is performed using a standard Ruge-Stilaesearong algorithm. The possible connections
are defined by the entries in the matrlx The variable is strongly coupled to another variabjéf

a;j < —c_max|a;| OF ai; > ¢y max|akl, (3.4)

where0 < ¢_ < 1 and0 < ¢y < 1 are parameters. Typically. =~ 0.2 andc, ~ 0.5. Once the negative
(P~) and positive PT) strong couplings have been determined the variables widediinto coarse() and
fine (F") variables using the standard coarsening scheme.
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The interpolation matrix may be constructed using @&-splitting and the strong couplings of the
matrix. The interpolation of coarse nodes is simple as tleeyain unchanged. The interpolation of fine
nodes starts from the fact the smooth ewranust roughly satisfy the conditiate = 0 or

ai;:€; + Z ajje; = 0. (35)
J#i
By manipulation
ai;e; + o Z aije; + B; Z aij€e; = 0, (3.6)
jecnp; jecnp;t
where 5 5
Y ot Qg
o = =% Y and 8 = _aERT Y (3.7)

ZJ’GCQPI i Z,jeCmP;r aij

The interpolation thus becomes

. _a.a,,/a.,’ jEP-77
l je;ﬂ o Y —Biazj/ai,  jE€ P

This is known adlirect interpolation It may be modified by using also the stroignodes in the
interpolation. This means that in formuld.p) the following elimination is made for eaghe F' N P;

€; — — Z ajkek/ajj. (3.9)

keCNP;

This is known astandard interpolationIn practice it means that the number of nodes used in thepiote
lation is increased. This may be important to the qualityhef interpolation particularly if the number of
directC-neighbors is small.

After the interpolation weights have been computed the lestatoefficients may be truncated if they
are smallj.e, w; < ¢, max |wyg|, wherec,, =~ 0.2. The other values must accordingly be increased so that
the sum of weights remains constant. The truncation is éiss@npreventing the filling of the coarse level
matrices.

Cluster multigrid

There is also an implementation of the agglomeration ortefusultigrid method. It is a variant of the
algebraic multigrid method. In this method the componengsgeouped and the coarse-level matrices are
created simply by summing up the corresponding rows andwodu In other words, the projection matrix
includes just ones and zeros.

The cluster multigrid method should be more robust for peatd where it is difficult to generate an
optimal projection matrix. However, for simple problemssitusually beaten by the standard Ruge-Stiiben
method.

3.4.3 Preconditioning by multilevel methods

Multilevel methods are iteration methods on their own beytlsan also be applied as preconditioners for
the Krylov subspace methods. This preconditioning apgraacresponds to taking/ = A in (3.3) and
performing an inaccurate solution of the resulting systsmgimultilevel methods to obtain A rather mild
stopping criterion may be used in this connection. Pred@rdng by multilevel methods may lead to very
efficient solution methods for large linear systems. It iseddhat in connection with the preconditioning by
multilevel methods using the GCR method as a linear solvesdsmmended.
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3.5 Keywords related to linear system solvers
The following keywords may be given in Solver section of tbiver input file (.sif file).

Linear System Solver String
Using this keyword the type of linear system solver is selécihis keyword may take the following
values:
e Direct
e lterative
e Multigrid

Herelterative andMultigrid refer to the Krylov and multilevel methods, respectively.

Linear System Direct Method String
If the value of theLinear System Solver keyword is set to b®irect , one may choose a band
matrix solver with the valu@anded or a sparse matrix solver with the valuenfpack , mumps
Pardiso orsuperlu ,. The defaultiBanded.

Linear System Iterative Method String
If the value of theLinear System Solver keyword is set to béerative , one should choose
a Krylov method by setting the value of this keyword to be ofthe following alternatives:
e CG
e CGS
e BiCGStab
e BiCGStabl
e TFQMR
e GMRES
e GCR

See also th#1G Smoother keyword.

Linear System GMRES Restart Integer [10]
The restart parametet for the GMRES{n) method may be given using this keyword.

Linear System GCR Restart Integer
The restart parameter for the GCR{n) method may be given using this keyword. The default option
is that restarting is not performed, i.e. the full GCR is used

BiCGstabl polynomial degree Integer
The parametef for the BiCGStab() method may be given. By default the minimal applicable galu
¢ =2is used.

Linear System Preconditioning String

A preconditioner for the Krylov methods may be declared hyirsg the value of this keyword to be
one of the following alternatives:

e None

e Diagonal

e ILUn , where the literah may take values 0,1,...,9.

o ILUT

e Multigrid

See also th#!G Preconditioning keyword.
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Linear System ILUT Tolerance Real [0.0]
This keyword is used to define the value of the numerical &wlee for the ILUT preconditioner.

Linear System Convergence Tolerance Real [0.0]
This keyword is used to define a stopping criterion for thelBwymethods. The approximate solution
is considered to be accurate enough if the iterate satisfies

Az bl _
I

wheree is the value of this keyword. See alstG Tolerance .

Linear System Max Iterations Integer [0]
This keyword is used to define the maximum number of the itamatthe Krylov methods are permit-
ted to perform. If this limit is reached and the approximatieison does not satisfy the stopping crite-
rion, ElmerSolver either continues the run using the cura@proximate solution as the solution of the
system or aborts the run depending on the valueiméar System Abort Not Converged
keyword. See alsMG Max lIterations  keyword.

Linear System Abort Not Converged Logical [True]
If the value of this keyword is set to B&ue , EImerSolver aborts the run when the maximum number
of iterations the algorithm is permitted to perform is readland the approximate solution does not
satisfy the stopping criterion. Otherwise the run will bentioued using the current approximate
solution as the solution of the system (this may lead to tiesuht later steps of computation).

Linear System Residual Output Integer [1]
By default the iterative algorithms display the value of (eealed) residual norm after each iteration
step. Giving a value > 1 for this keyword may be used to display the residual norm aftigr every
n iterations. If the value 0 is given, the residual outputisatled.

Linear System Precondition Recompute Integer [1]
By default the EImerSolver computes the preconditionemwdneew application of iterative algorithm
is started. If the value of this keyword is set to bethe preconditioner is computed only after
n successive subroutine calls for linear systems arisiogyfsame source. This may speed up the
solution procedure especially in cases where the coefficigirix does not change much between
successive subroutine calls. On the other hand if the caaffimatrix has changed significantly, the
preconditioner may not be efficient anymore.

Optimize Bandwidth Logical [True]
If the value of this keyword is set to bierue , the Cuthill-McKee bandwidth optimization scheme is
used to order the unknowns in such a way that band matriceésechandled efficiently. The bandwidth
optimization is recommended when the direct solver or inglete factorization preconditioners are
used.

The keywords beginning witMGare activated only if either theinear System Solver orLinear

System Preconditioning keyword has the valu®lultigrid . If a multigrid method is used as the
linear system solver, some keywords starting viitBmay be replaced by corresponding keywords starting
with phraseLinear System . It should be noted that in the case of a multigrid solverehare some

limitations to what values the keywords starting with thegsteLinear System may take, see below.

MG Levels Integer [1]
This keyword is used to define the number of levels for the igwidt method.

MG Equal Split Logical [False]
A hierarchy of meshes utilized by the multigrid method maygbaerated automatically by setting the
value of this keyword to b&rue . The coarsest mesh must be supplied by the user and is d&lare
the usual way in the Header section of the solver input filee @tiher meshes are obtained using an
equal division of the coarse mesh. The solution of the prabéll be sought for the finest mesh.
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MG Mesh Name File
A hierarchy of meshes utilized by the multigrid method mayshpplied by the user. A base name of
the mesh directories is declared using this keyword. Theasashmesh directories must be composed
of the base name appended with a level number such that ifathe fiame isngridmesh , the mesh
directories should have namegridmeshl , mgridmesh2 , etc. The meshes are numbered starting
from the coarsest mesh. In addition, the finest mesh must tlardd in the Header section of the

solver input file. It should be noted that th&5 Equal Split keyword must be set to bEalse
to enable the use of user-supplied meshes.

MG Max lIterations Integer [0]

If a multigrid method is used as a preconditioner for the Kwmethods, the value of this keyword
defines the maximum number of iterations the multigrid mdttsoallowed to perform to solve the
preconditioning equatior3(3). Usually one or two iterations are sufficient. If a mult@jrinethod

is the linear system solver, the use of this keyword is sintdathat of theLinear System Max
Iterations keyword.

MG Convergence Tolerance Real [0.0]

If a multigrid method is used as a preconditioner for the Kwimethods, this keyword defines the
solution accuracy for the preconditioning equati8t8{. This keyword is not usually needed if tMG
Max lIterations keyword has a small value. If a multigrid method is the linsgstem solver,

the use of this keyword is similar to that of théear System Convergence Tolerance
keyword.

MG Smoother String
This keyword defines the algorithm for pre- and post-smaghilt may take one of the following
values:
e Jacobi
e CG
e BiCGStab

If the linear system solver is a multigrid method, thimear System lIterative Method

keyword may be used instead of this keyword, but only theetlalgorithms mentioned here can be
applied.

MG Pre Smoothing Iterations Integer [0]
This keyword defines the number of pre-smoothing iterations

MG Post Smoothing Iterations Integer [0]
This keyword defines the number of post-smoothing iteration

MG Preconditioning String
This keyword declares the preconditioner for the algoriththich is used in smoothing iterations. It
may take one of the following values:

e None

e ILUn , where the literah may take values 0,1,...,9.
o ILUT

Note that this keyword is not related to using multigrid neethas a preconditioner. It is also noted
that preconditioning the smoothing algorithms does notrstework well if a multigrid method is
used as a preconditioner for Krylov methods.

MG ILUT Tolearance Real [0.0]

This keyword defines the numerical tolerance for the ILUTcpreditioner in connection with smooth-
ing iterations.
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The keywords for the algebraic multigrid solver are in a &part the same as for the geometric multigrid.
There are however some keywords that are related only to AMG.

MG Lowest Linear Solver Limit Integer
This value gives a lower limit for the set of coarse nodesradteich the recursive multilevel routine
is terminated. A proper value might be around 100.

MG Recompute Projector Logical
This flag may be used to enforce recomputation of the projexdcoh time the algebraic multigrid
solveris called. The defaultzalse as usually the same projector is appropriate for all contprta.

MG Eliminate Dirichlet Logical
At the highest level the fixed nodes may all be set to be coamse their value is not affected by the
lower levels. The default irue

MG Eliminate Dirichlet Limit Real
Gives the maximum fraction of non-diagonal entries for adbitet node.

MG Smoother String
In addition to the selection for the GMG optigor (symmetric over relaxation) is possible.

MG SOR Relax String
The relaxation factor for the SOR method. The defaultis 1.

MG Strong Connection Limit Real
The coefficient_ in the coarsening scheme. Default is 0.25.

MG Positive Connection Limit Real
The coefficient. in the coarsening scheme. Default is 1.0.

MG Projection Limit Real
The coefficient,, in the truncation of the small weights. The defaultis 0.1.

MG Direct Interpolate Logical
Chooses between direct and standard interpolation. TleutlésFalse .

MG Direct Interpolate Limit Integer
The standard interpolation may also be applied to nodesaritha small number of coarse connec-
tion. This gives the smallest number of nodes for which dimgerpolation is used.

Finally, there are also some keywords related only to thsteling multigrid.

MG Cluster Size Integer
The desired choice of the cluster. Possible choices aré,3,3,.and zero which corresponds to the
maximum cluster.

MG Cluster Alpha Real
In the clustering algorithm the coarse level matrix is natiropl for getting the correct convergence.
Tuning this value between 1 and 2 may give better performance

MG Strong Connection Limit Real
This is used similarly as in the AMG method except it is redetie positive and negative connections
alike.

MG Strong Connection Minimum Integer

If the number of strong connections with the given limit isaler than this number then increase the
set of strong connection if available connections exist.
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3.6 Implementation issues

3.6.1 The sparse matrix storage

To be efficient, iteration methods require that a matrixteeproduct for sparse matrices is efficiently im-
plemented. A special storage scheme called the Compresse&®rage (CRS)J is used in ElImerSolver
to store only those matrix coefficients that differ from zero

The matrix structure is defined in modulgpes as:

TYPE Matrix_t
INTEGER :: NumberOfRows

REAL(KIND=dp), POINTER :: Values(:)
INTEGER, POINTER : Rows(:), Cols(:), Diag(:)

END TYPE Matrix_t

The matrix type has several additional fields, but the basiage scheme can be implemented using the
fields shown. The arrayalues is used to store the nonzero elements of the coefficient xadthie array
Cols contains the column numbers for the elements stored in ttay &alues , while the arrayRows
contains indices to elements that start new rows. In addiftow(n+1) gives the number of nonzero
matrix elements + 1. The arrddiag is used to store the indices of the diagonal elements.

For example, to go through the matrix row by row the followingp may be used

USE Types

TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp):: val
INTEGER :: i, j, row, col

DO i=1, A % NumberOfRows

PRINT =, 'Diagonal element for row ', i, " is ', A % Values( A % Diag(i) )
DO j=A % Rows(i), A % Rows(i+1)-1
row = i

col = A % Cols())
val = A % Values())
PRINT =%, 'Matrix element at position:
END DO
END DO

, row,col, " is ', val

3.6.2 Subroutine calls

Most of the functionality of the sparse linear system solvkethe ElmerSolver is available by using the
function call

Norm = DefaultSolve().

The return valué&Norm is a norm of the solution vector.

Sometimes it may be convenient to modify the linear systeforbesolving it. A Fortran function which
performs this modification can be written by the user with tlagne of the function being declared in the
solver input file. For example, this technique may be usedtfmd a user-supplied linear system solver.

If the name of the user-supplied Fortran functiopiisc and it can be found in the file having the name
Filename |, the declaration

Before Linsolve File Filename proc
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in the solver input file has the effect that the function wil balled just before the default call of linear
system solver. The arguments the function can take are fixéduee declared as

FUNCTION proc( Model, Solver, A, b, X, n, DOFs, Norm ) RESULT( stat)
USE SolverUtils
TYPE(Model_t) : Model
TYPE(Solver_t) :: Solver
TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp) :: b(:), x(:), Norm
INTEGER :: n, DOFs, stat

END FUNCTION proc

Here the Model structure contains the whole definition of ¢lraer run. The Solver structure contains
information for the equation solver from which this linegistem originates. The coefficient matexis in
CRS formatp is the right-hand side vector, axdcontains the previous solution. The argumeris the
number of unknowns, andOFsis the number of unknowns at a single node.

If the return value from this function is zero, the (poss)htyodified linear system is solved after the
return. If the return value is 1, the linear system is assutodak already solved and the vectoshould
contain the result. It is noted that the user-supplied Bartunction may also call the default linear equation
solver within the function, i.e. one may write the subroataall

CALL SolveLinearSystem( A, b, x, Norm, DOFs, Solver )

HereA andb may be modified so that the linear system which is solved netblsnisame as the input system.
In a similar way the user may also supply a user-defined Roftraction which will be called just after
the solution of linear system. This is done using the detitara

After Linsolve File Filename proc

in the solver input file. The arguments of this function are #ame as for a function in the context of
Before Linsolve keyword.
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Chapter 4

Nonlinear System Options

4.1 Introduction

Numerical methods in linear algebra are usually intendedHe solution of linear problems. However,
there are many problems which are not linear in nature. Thdimearity may a intrinsic characteristics
of the equation, such as is the case with intertial forceh@Navier-Stokes equation. The nonlinerity
might also a result of nonlinear material parameters thpedd on the solution. What ever the reason for
nonlinearity the equations in Elmer are always first lineadi to the form

Aui—1)u; = b(ui—1), (4.1)

wherei refers to the iteration cycle.

How the equations are linearized varies from solver toagrotfor example, in the Navier-Stokes solver
there are tow different methods — the Picard linearizatiod the Newton linearization that may be used.
Also a hybrid scheme where the Picard type of scheme is sedtthb the Newton kind of scheme when
certain criteria are met is available. Therefore this sectvill not deal with the particular linearization
technique of different solver but tries to give some lightlie generic keywords that are available. Some
keywords may also be defined in the Models Manual relatedticpéar solvers.

In multiphysical simulations there are also a number of kangs related to the solution of coupled sys-
tems. Basically one may may define how many times a systenmuatiens is solved repeatedly at maximum
and how what are the convergence criteria of the individakiess that must be met simulataneously.

4.2 Keywords related to solution of nonlinear systems

These keywords are located in the Solver section of eaclesdivequited at all.

Nonlinear System Convergence Measure String
The change of solution between two consecutive iteratioamg lpe estimated by a number of different
measures which are envoked by valuesm, solution  andresidual . The default way of

checking for convergence is to test the change of norm
6 = 2 [|ui| = |wi—1|[/(Jus] + ui-1]). (4.2)

This measure is rather liberal since the norm of two sol&iomy be the same even though the
solutions would not. Therefore it is often desirable to l@khe norm of change,

0= 2x |u; — wi—1|/(Jui| + |ui—1])- (4.3)

The third choice is to use a backward norm of the residual e/tfex old solution is used with the new
matrix.
0 = |Ax;_1 — b|/|b]. (4.4)
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In the current implementation this norm lags one step beanttitherefore always performs one extra
iteration.

Nonlinear System Norm Degree Integer
The choice of norms used in the evaluation of the convergemeasures is not self evident. The
default is theL2 norm. This keyword may be used to replace thislby norm where values = 0
corresponds to the infinity (i.e. maximum) norm.

Nonlinear System Norm Dofs Integer
For vector valued field variables by default all componemnésiesed in the computation of the norm.
However, sometimes it may be desirable only to use some of thiéis keyword may be used to give
the number of components used in the evaluation. For exanmptee Navier-Stokes equations the
norm is only taken in respect to the velocity componentsevpiessure is omitted.

Nonlinear System Convergence Absolute Logical
This keyword may be used to enforce absolute convergencsuresarather than relative. The default
is False .

Nonlinear System Convergence Tolerance Real

This keyword gives a criterion to terminate the nonlinearation after the relative change of the norm
of the field variable between two consecutive iterationsiglsenoughy < ¢, wheree is the value
given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solverlmngd to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration aftaumber of Picard iterations have been
performed. If a given convergence tolerance between twatitns is met before the iteration count
is met, it will switch the iteration type instead. This agglionly to some few solvers (as the Navier-
Stokes) where different linearization strategies arelakés.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, ifriélative change of the norm of the field
variable meets a tolerance criterion:
0 <€,

wheree is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the lnoear equation solver. Using a factor
below unity is sometimes required to achive convergencéefrionlinear system. Typical values
range between 0.3 and unity. If one must use smaller valuethéorelaxation factor some other
methods to boost up the convergence might be needed to iehevconvergence. A factor above
unity might rarely speed up the convergence. Relaxed Varialdefined as follows:

u; = \u; + (1 - /\)ui,l,
where is the factor given with this keyword. The default value foe relaxation factor is unity.

Many of the keywords used to control thenlinear System  have a corresponding keyword for the
Steady State. Basically the operation is similar exceptéfierence value for the current solutionis the
last converged value of the nonlinear system before stpatimew loosely coupled iteration cycle. Otherwise
the explanations given above are valid.

Steady State Convergence Measure String
Steady State Norm Degree Integer
Steady State Norm Dofs Integer
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Steady State Convergence Tolerance Real
Steady State Relaxation Factor Real
Additionally these keywords are located in tBenulation  section of the command file.

Steady State Max lterations Integer
The maximum number of coupled system iterations. For stetatg analysis this means it litelarly,
for transient analysis this is the maximum number of iteradiwithin each timestep.

Steady State Min Iterations Integer
Sometimes the coupling is such that nontrivial solutiore @lotained only after some basic cycle
is repeated. Therefore the user may sometimes need to sethalsninimum number of iterations.
Sometimes the steady state loop is also used in a dirty wap spthe systematic procedures — for
example computing the capacitance matrix, or lumped elagtings. Then this value may be set to
an a priori known constant value.

CSC — IT Center for Science [@)sv-nD |



Chapter 5

Integration of time-dependent systems

5.1 Introduction

Solving time-dependent systems is becoming more and manencm in various branches of computational
science, as the computer resources grow steadily. EiImezSmlay be adapted to solve such systems. The
first order time derivatives may be discretizated by usirggftiilowing methods:

e the Crank-Nicolson method
o the Backward Differences Formulae (BDF) of several orders

In the case of the first order BDF scheme adaptive time-stepgirategy may also be used.
The second order time derivatives are approximated by mitsiag the Bossak method or reformulating
the second order equations as equivalent systems of first ecgliations.

5.2 Time discretization strategies
Consider the numerical solution of the evolutionary fieldiaipn

o¢
= A
o TKo=1. (5.1)
where the differential operatd€ does not involve differentiation with respect to timend f is a given

function of spatial coordinates and time. The spatial @iszation of 6.1) leads to the algebraic equations
M2 ko F, (5.2)
ot
whereM, K andF result from the discretization of the identity operatoe tiperato/C and f, respectively.
The vectord contains the values of the unknown fielct nodes.
The applications of the first three BDF methods to discrédiiae time derivative term irb(2) yield the
following systems:

1 . . 1 _
— M+ K)ot = pitl 4~ M@? 5.3
(At * ) A ’ (®-3)
1 2 ‘ 2 . 1 4 . 1_.

— M+ K)ot =2t M= — ! 4
(At T3 ) 3 Y (3 3 ’ ®4)

1 6 ‘ 6 . 1 8. 9 . 2 .
— M+ —K|oH = —Ftl 4 M= — 4 o2 5.5
<At 1 ) 11 A <11 11 1 ’ (5.5)

whereAt is the time step and’ is the solution at time step Similarly, F* is the value ofF’ at time step.
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All the BDF methods are implicit in time and stable. The aegigs of the methods increase along with
the increasing order. The starting values for the BDF sclsemherdern > 1 are computed using the BDF
schemes of order, ..., n — 1 as starting procedures. It should be noted that the BDFetigations of order
n > 3 do not allow the use of variable time-step size. Adaptivestistepping strategy may also be used in
the case of the first order BDF scheme.

The adaptive time-stepping is accomplished by first soltiregsystem using a trial time step and then
using two time steps the lengths of which equal to the halhaf bf the trial time step and comparing the
results. If the difference between the results is found teldéciently small, the use of the trial time step is
accepted. Otherwise a new trial time step is defined by digidihe previous trial time step into two steps
of equal length and then the procedure is repeated. One nfaedme’s own criterion for determining
whether the use of the current time step is accepted. Theltlefaerion is that the norms of the solutions
to each system of field equations do not differ more than thergtihreshold value.

The time discretization of the second order equation

9?® 0P
W‘FBE-FK(I):F (5.6)

using the Bossak method leads to the system

M

1

1— , . — . (1 — .
( Sl B+K>@”1:F”1+M< @ pip Yy a)AZ>+

B(AL)? BAEL B(AL)? BAt 23 (5.7)
Y o i B i .
b (3 1) v (1o ) )
where

VL= Vi 4 At ((1— ) A" +yAT)
i1 1 i1 gy L i R WY

ALt _75(At)2((1)+ (I)) ﬂAtV + <1 2ﬂ>A, (5.8)
ﬂzi(l—a)% 7:%—04.

In the following the matriced/ and B are referred to as the mass and damping matrix, respectively

5.3 Keywords related to time discretization

All the keywords related to the time discretization may beegiin Simulation section of the solver input file
(.sif file). A number of keywords may also be given in Solvertsm, so that each system of field equations
may be discretizated using independently chosen timgstgpnethod. If keywords are not given in the
Solver section, the values of the keywords are taken to b&etiven in the Simulation section. It should
be noted that certain keywords such as those controllingtingber of time steps, time-step sizes etc. may
only be given in the Simulation section.

Timestepping Method String
This keyword is used to declare the time discretizatiortatyafor the first order equations. The value
of this keyword may be set to be eitH&DF” or "Crank-Nicolson” and may be given in either
Simulation section or Solver section of the solver input file

BDF Order Integer
This keyword is used to define the order of the BDF method angdtaie values 1,...,5. This keyword
may be given in either Simulation section or Solver sectibthe solver input file.

Time Derivative Order Integer
If a second order equation is discretizated, this keywordtnine given the value 2 in the Solver
section of the solver input file. It should be noted that theose order time derivatives are always
discretizated using the Bossak method.
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Bossak Alpha Real [-0.05]
This keyword is used to define the value foim the Bossak method used in the time discretization of
second order equations. This keyword may be given in eitlreulation section or Solver section of
the solver input file.

Timestep Intervals Integer array
This keyword is used to define the number of time steps. It negrpay-valued so that different
time-step lengths may be used for different time intervatbe entire simulation. For example, if one
wishes to take first 50 time steps and then to use a differaet sitep length for the following 100 time
steps, one may define

Timestep Intervals(2) = 50 100

and use th@imestep Sizes keyword to define time-step lengths for the two sets of tirepst

Timestep Sizes Real array
This keyword is used to define the length of time step. If tHaevaf theTimestep Intervals
keyword is array-valued, the value of this keyword must éls@an array of the same size. For example,
if one has defined

Timestep Intervals(2) = 50 100
the declaration
Timestep Sizes(2) = 0.1 1.0

sets the time-step length for the first 50 time steps to berdX@ the remaining 100 time steps 1.0.

Timestep Function Real
Instead of using th&imestep Sizes keyword the length of time step may be defined by using
this keyword. The value of this keyword is evaluated at thgito@ng of each time step. A variable
time-step length may conveniently be defined using a MATCastren function.

Output Intervals Integer array
This keyword is used to define the time-step interval foriwgthe results on disk. As in the case of
theTimestep Sizes keyword the size of the value of this keyword must be compatisth that
of the Timestep Intervals keyword. The value at a step is saved if for the corresponding
output intervab mod(m-1,0)==0 . An exception is output interval equal to zero for which autis
not saved at all. However, the last step of the simulatiohways saved.

Lumped Mass Matrix Logical [false]
The use of a lumped mass matrix may be activated by settingaiie of this keyword to b&rue in
the Solver section of solver input file. The default lumpiaglefined by

Zi Zj M;;

M = M; ==~

(22

(5.9)

The keywords related to the adaptive time-stepping may belygiven in the Simulation section of the
solver input file. When the adaptive time-stepping straiegysed, a set of trial time steps is defined using
the keywords introduced above. The adaptive procedurecisug®d for each of these trial steps. Note that
the adaptive time-stepping is possible only in the caseefitht order BDF scheme.

Adaptive Timestepping Logical [false]
The value of this keyword must be set tobeie if the adaptive time integration is to be used.

Adaptive Time Error Real
This keyword is used to define the threshold value for theddn for determining whether the use of
the current time step is accepted.
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Adaptive Error Measure Real
Using this keyword one may define one’s own measure for etiafyahe difference between the
computed results. This measure and the threshold valuehvidgiven using th&daptive Time
Error keyword, may be used to define a user-defined criterion f@rdehing whether the use of the
current time step is accepted. The value ofAlgaptive Error Measure keyword is evaluated
twice for each trial time step. For the first time the valueha keyword is evaluated after the system
is solved using the trial time step. The second time is afterstystem is solved using two time steps
the lengths of which equal to the half of that of the trial tistep. The absolute value of the relative
difference between these two values is compared to thehbictvalue given by theé\daptive
Time Error keyword to determine whether the use of the current time istepcepted. If several
systems of field equations are solved, all the solutions saify the similar criterion. If this keyword
is not used, the default criterion is based on comparing tiima of the solution fields.

Adaptive Min Timestep Real
Using this keyword one can limit the subsequent divisiorhefttial time steps by giving the minimum
time-step length which is allowed.

Adaptive Keep Smallest Integer [1]
By default the adaptive scheme tries to double the lengthefine step after the acceptable time
step is found. If a value > 1 is given for this keyword, the adaptive scheme tries to iasesthe step
length after taking n steps which are at most as long as tpdestgth accepted.

5.4 On the treatment of time derivatives in EImer Solver code

In the following a number of issues that may be useful if ongriting a code to solve one’s own application
are explained.

By default ElImer Solver does not generate or use global madamping matrices in the solution of
time-dependent systems. Mass and damping matrices neecctniputed only element-wise, as the linear
system resulting from the time discretization, such &g)( is first formed element-wise and this local
contribution is later assembled to the global system. Inctee of the first order equatioB.p) the local
linear system may be formed by using the subroutine call

CALL DefaultlstOrderTime( M, K, F ),

whereM is the element mass matrik is the element stiffness matrix addis the element force vector. In
a similar manner, in the case of the second order equai@®hdne may use the subroutine call

CALL Default2ndOrderTime( M, B, K, F ),

whereB is the element damping matrix.

Note that these subroutines must also be called for the loa#ices and vectors that result from the
discretization of neumann and newton boundary condititittie boundary conditions do not contain any
time derivatives, thé/ and B matrices should be set to be zero before calling the abovestibhes.

If the global mass matrix is required, it may be generateddiggithe subroutine call

CALL DefaultUpdateMass( M )
Similarly, the global damping matrix may be generated bypas$he subroutine call
CALL DefaultUpdateDamp( B ).

Global mass (and possibly damping) ma